Identification, molecular structure and expression of two cloned serotonin receptors from the pond snail, Helisoma trivolvis.
نویسندگان
چکیده
Helisoma trivolvis has served as a model system to study the functions of serotonin (5-HT) from cellular, developmental, physiological and behavioural perspectives. To further explore the serotonin system at the molecular level, and to provide experimental knockout tools for future studies, in this study we identified serotonin receptor genes from the H. trivolvis genome, and characterized the molecular structure and expression profile of the serotonin receptor gene products. Degenerate oligonucleotide primers, based on conserved regions of the Lymnaea stagnalis 5-HT(1Lym) receptor, were used to amplify G protein-coupled biogenic amine receptor sequences from H. trivolvis genomic cDNA, resulting in the cloning of two putative serotonin receptors. The deduced gene products both appear to be G protein-coupled serotonin receptors, with well-conserved structure in the functional domains and high variability in the vestibule entrance of the receptor protein. Phylogenetic analysis placed these receptors in the 5-HT(1) and 5-HT(7) families of serotonin receptors. They are thus named the 5-HT(1Hel) and 5-HT(7Hel) receptors, respectively. In situ hybridization and immunofluorescence studies revealed that these genes and gene products are expressed most heavily in the ciliated pedal and mantle epithelia of H. trivolvis embryos. In adults, widespread expression occurred in all ganglia and connectives of the central nervous system. Expression of both receptor proteins was localized exclusively to neurites when examined in situ. In contrast, when isolated neurons were grown in culture, 5-HT(1Hel) and 5-HT(7Hel) immunoreactivity were located primarily in the cell body. This is the first study to reveal a 5-HT(7) receptor in a molluscan species.
منابع مشابه
Pharmacology of ionotropic and metabotropic glutamate receptors on neurons involved in feeding behavior in the pond snail, Helisoma trivolvis.
Glutamate is a key regulatory neurotransmitter in the triphasic central pattern generator controlling feeding behavior in the pond snail, Helisoma trivolvis. It excites phase two motor neurons while inhibiting those in phases one and three. However, the receptors that mediate this regulation are only partially characterized. The purpose of these experiments was to further characterize the gluta...
متن کاملRegulation of early embryonic behavior by nitric oxide in the pond snail Helisoma trivolvis.
Helisoma trivolvis embryos display a cilia-driven rotational behavior that is regulated by a pair of serotonergic neurons named ENC1s. As these cilio-excitatory motor neurons contain an apical dendrite ending in a chemosensory dendritic knob at the embryonic surface, they probably function as sensorimotor neurons. Given that nitric oxide (NO) is often associated with sensory neurons in inverteb...
متن کاملApical sensory neurones mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails.
Freshwater pond snails Helisoma trivolvis and Lymnaea stagnalis undergo larval development and metamorphosis inside egg capsules. We report that their development is permanently under slight tonic inhibitory influence of the anterior sensory monoaminergic neurones, which are the remnants of the apical sensory organ. Conspecific juvenile snails, when reared under conditions of starvation and cro...
متن کاملPropagation of action potentials through electrotonic junctions in the salivary glands of the pulmonate mollusc, Helisoma trivolvis.
The secretory cells of the salivary glands of the snail, Helisoma trivolvis, exhibit regenerative, overshooting action potentials whose ampliture may exceed 100 mV. The salivary glands consist of paired, tubular, epithelial structures with acinar outpocketings. The secretory cells display extensive electrical coupling which allows action potentials to propagate along the glandular epithelium. S...
متن کاملIdentification, characterisation and in vitro reconstruction of an interneuronal network of the snail Helisoma trivolvis.
1. We describe three interneurones and their follower cells in the central ganglionic ring of Helisoma trivolvis. 2. The largest neurone on the dorsal surface of the left pedal ganglion is shown to be an interneurone that contains dopamine and makes monosynaptic connections with a large number of follower cells in the visceral and left parietal ganglia. This neurone is designated as left pedal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 211 Pt 6 شماره
صفحات -
تاریخ انتشار 2008